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Abstract:  

 This manuscript provides a comprehensive investigation of the 

fractional (1+1)-dimensional nonlinear Korteweg-de Vries 

(KdV) model in the context of quantum plasma. The primary 

objective is to derive and mathematically explain the fractional 

(1+1)-dimensional nonlinear KdV model within quantum 

plasmas, focusing on ion acoustic solitary waves. Using the 

reductive perturbation technique, the fractional KdV equation 

is formulated and solved via the tanh hyperbolic function 

technique. The study examines the effects of ion pressure and 

an external electric field on ion acoustic waves, considering 

plasma characteristics such as ion-electron temperature ratios, 

nonextensive electron and positron effects. The manuscript 

investigates the influence of the fractional order and plasma 

parameters on the phase velocity of ion acoustic waves. 

Notably, the results reduce to known outcomes when the 

fractional order equals one. This work contributes significantly 

to the understanding of nonlinear phenomena in quantum 

plasmas, particularly ion acoustic waves, with potential 

applications in astrophysical and cosmological contexts. 

Keywords: KdV model, fractional calculus, quantum plasma, 

solitary waves, ion acoustic 
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1. Introduction 

Quantum plasmas, which involve the collective behavior of charged particles under the influence of 

quantum mechanical effects, have become an important subject of study in various fields, including 

astrophysics, space physics, and fusion research. To describe the behavior of quantum plasmas, three 

well-established models are commonly used, each incorporating different physical effects and 

mathematical frameworks [G. C. Das and S. N. Paul, 1985], [W. Masood, N. Jehan, A. M. Mirza, 

and P. H. Sakanaka, 2008]. The quantum hydrodynamics (QHD) model is one of the most widely 

used and fundamental frameworks in the study of quantum plasmas. It provides a macroscopic 

description by combining the classical fluid equations with quantum mechanical principles such as 

quantum pressure, quantum potential, and quantum statistics. The QHD model serves as a basis for 

understanding the collective behavior of quantum plasma systems, including phenomena such as 

wave propagation, particle dynamics, and plasma instabilities. In this model, the plasma's collective 

behavior is described by a set of fluid-like equations, including the continuity equation, Euler 

equation, and Poisson equation, with quantum corrections that account for the wave nature of 

particles and the effects of quantum statistics [T. S. Gill, A. Singh, H. Kaur, N. S. Saini, and P. Bala, 

2007 ], [ M. G. Hafez and M. R. Talukder, 2015]. In contrast, the classical plasma fluid model extends 

the principles of classical fluid dynamics to describe plasma systems. While it does not incorporate 

quantum effects, it remains essential for understanding the macroscopic behavior of classical 

plasmas. The classical equations of motion, such as the continuity equation and the Navier-Stokes 

equation govern the plasma's evolution in the absence of quantum effects and can be viewed as a 

limiting case of the QHD model when quantum effects are negligible. The classical model forms the 

foundation for many plasma theories and is still widely applied to describe low-temperature plasmas 

where quantum effects are not dominant [M. G. Hafez, M. R. Talukder, and R. Sakthivel, 2016] ,[H. 

K. Malik, 1996.].  

An important area of research in quantum plasmas involves the formulation and analysis of nonlinear 

fractional differential equations (FDEs) or partial differential equations (PDEs), which are used to 

model the wave propagation and structural dynamics within quantum plasma systems. Nonlinearities 

and fractional calculus provide an effective framework for describing complex phenomena, such as 

solitons, shock waves, and wave-particle interactions. By combining the QHD model with these 

mathematical techniques, researchers can develop more accurate models that account for the 

nonlinear and fractional effects observed in quantum plasma behavior [H. K. Malik, 1995], [K. 

Singh, V. Kumar, and H. K. Malik, 2005.]. These models provide a comprehensive approach for 
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understanding the behavior of quantum plasmas, ranging from microscopic quantum effects to 

macroscopic plasma dynamics. This integrated framework allows researchers to investigate the rich 

variety of phenomena in quantum plasmas, such as quantum shock waves, solitary waves, and other 

nonlinear plasma behaviors, with applications in fields such as space physics, fusion energy, and 

astrophysical systems [H. K. Malik, 1996] ,  [D. K. Singh and H. K.Malik,2005]. 

The study of magnetized ion-electron-positron quantum plasmas has become a focal point in 

understanding the behavior of ion-acoustic (IA) waves, both in linear and nonlinear regimes. These 

plasmas composed of electrons, positrons, and ions, exhibit complex wave dynamics that are 

influenced by quantum mechanical effects. A key area of investigation involves the analysis of ion-

acoustic waves (IAWs), which are a type of sound wave propagating through the plasma, and their 

response to both classical and quantum effects.  

Recent studies have expanded our understanding of IAWs by utilizing the QHD model, which 

incorporates quantum mechanical corrections into the classical fluid equations. Khan and Mushtaq 

explored the properties and stability of IAWs in ultracold quantum plasmas, including the effects of 

transverse perturbations on wave propagation. By deriving the KP equation, they were able to study 

the dynamics of IAWs under these conditions, providing insights into their stability and nonlinear 

evolution. Khan and Haque employed the QHD model to derive the nonlinear weakly limit of the 

deformed KdV Burgers equation, which is crucial for understanding the nonlinear dynamics of IAWs in 

quantum plasmas. This work highlights the importance of nonlinear modeling in describing the 

complex behavior of ion-acoustic waves, particularly in quantum environments [R. Malik, H. K. 

Malik, and S. C. Kaushik, 2012 ] , [F. C. Michel, 1982]. These investigations demonstrate the 

ongoing efforts to develop and refine mathematical models, such as the QHD model and its 

extensions, to better understand the behavior of ion-acoustic waves and related phenomena in 

quantum plasmas. The exploration of nonlinear equations and the study of wave dynamics continue 

to be pivotal in advancing our understanding of quantum plasmas and their applications in various 

fields, from fusion energy to astrophysical environments [ G. C. Das and S. N. Paul, 1985] , [H. R. 

Pakzad and M. Tribeche, 2013]. 

The study of nonlinear waves, particularly solitons and solitary waves, is of paramount 

importance across various scientific disciplines, from laboratory research to astrophysical and space 

physics. These waves, which maintain their shape while propagating over time, are integral to 

understanding the dynamics of complex plasma systems. Nonlinear waves have been observed in a 

wide range of phenomena, including polar magnetospheres, solar wind, and the Earth's magnetotail, 

underscoring their relevance in both natural and experimental plasma environments. In these 

contexts, solitons and solitary waves provide valuable insights into the nonlinear and dynamic 

behavior of plasmas, which can exhibit both positive and negative wave amplitudes depending on the 

system parameters. Solitons and solitary waves are key solutions to nonlinear PDEs and are 
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characterized by their stability and ability to maintain their shape while propagating over long 

distances. These waves often arise in spatially extended systems where nonlinearity dominates the 

wave propagation. Their significance lies not only in their theoretical properties but also in their 

potential practical applications, which span laboratory experiments and astrophysical observations. 

Understanding the formation, propagation, and interaction of these waves is critical for a wide range 

of applications, from controlling plasma in fusion reactors to understanding cosmic plasma 

phenomena. 

Fractional calculus has emerged as a powerful and transformative tool in mathematics, offering more 

accurate and flexible models for real-world phenomena compared to traditional integer-order 

calculus. Its primary strength lies in its ability to effectively describe systems with non-local or long-

range memory effects, which are often inadequately represented by classical models. The field has 

rapidly expanded, with multiple definitions of fractional derivatives developed to suit different 

applications, including the Riemann–Liouville, Caputo, and conformable fractional derivatives. Each 

of these definitions provides unique advantages in various domains such as physics, engineering, 

biology, and finance [A.A. Kilbas, H.M. Srivastava, J.J. Trujillo,2006] , [M G Hafez, M R Talukder, 

and M H Ali, 2016]. One significant advancement in the field is the introduction of the conformable 

fractional derivative (CFD) by Khalil et al. [E. A-B. Abdel-Salam, M.F. Mourad, Math.2018], which 

extends the idea of fractional differentiation by incorporating simpler computational techniques 

while preserving the key properties of fractional derivatives. As research in fractional calculus 

continues to evolve, it holds great promise for advancing mathematical modeling in the natural and 

applied sciences, making it a cornerstone of modern scientific analysis 

Khalil et al. [E. A-B. Abdel-Salam, M.F. Mourad, Math.2018] introduced the CFD by 

establishing its definition through a limit process, offering a simpler and more computationally 

efficient approach compared to traditional fractional derivatives,  

1

0

( ) ( )
( ) lim , 0, (0,1]

x x x
D x x





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 







 
    . 

Substituting 1   into the final equations, the noninteger differentials transition into the well-

established integer differentials. Unlike classical definitions, which often involve integrals or 

complex limiting processes, the conformable fractional derivative is defined in such a way that it can 

be applied directly to functions in a more straightforward manner, while still capturing the key 

properties of fractional differentiation. This makes the CFD particularly useful for solving fractional 

differential equations in various fields, as it preserves the non-local memory effects characteristic of 

fractional models but with less computational complexity. The introduction of the CFD has opened 

up new possibilities for both theoretical research and practical applications, particularly in systems 

where classical fractional calculus may be challenging to apply. 

This paper is organized as follows: Section 2 presents the derivation of the basic fractional 

KdV model. In Section 3, we outline the procedure for obtaining and constructing explicit solitary 
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wave solutions for the model. Section 4 is dedicated to a discussion of the results. Finally, in the 

concluding section, we summarize the key findings and offer some prospects for future research. 

2. The formulation of the derivation for the KdV model 

We investigate the propagation of fractional nonlinear shocks and IASWs in a fully ionized, 

unmagnetized, three-component plasma system composed of relativistic hot ions, positrons, and 

nonextensive electrons. It is expected that the spatial fractional speed of quantum ions in acoustics 

will be significantly higher than any spatial fractional speed associated with the plasma flow. The 

charge neutrality equilibrium condition is assumed to be 0 0 0e i pn n n  , where the concentrations of 

ions, positrons, and unperturbed electrons are denoted by 
0 0,p in n and 0en , respectively. 

Additionally, it is assumed that the electron and positron concentrations follow an equilibrium q-

distribution function. It is possible to acquire the normalized non extensive concentrations of 

positron and electron [Wang M. L. and Li X. Z., 2005] as 

 
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Where 
0 0/p ea n n  and /e pT T  . In en and 

pn , we use q tends to 1 for isothermal electrons and 

positrons, 1q  for sub-thermal electrons and 1 1q    for super-thermal electrons. In weakly 

relativistic plasma, the dynamics of one-dimensional IASWs are described by the fractional 

continuity and motion equations for a normalized fluid. Additionally, closure for the system is 

provided by the fractional Poisson equation formulated in a one-dimensional fractional 

representation  

( ) 0,t i x iD n D n u                                               (1) 

1( ) ( ) 0,t x x i x iD u uD u D n D p                                       (2) 

3 ( ) 0,t i x i i xD p u D p p D u     

                             

(3) 

( 1) .x e p iD n n n                                     (4) 
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Note that equations (1) to (4) reduced to the well-known equations as obtained in [44]. In this case, 

𝑛i represents the concentration of ions normalized by the unperturbed electron concentration 0en , the 

electrostatic potential is  , the ions flow velocities along the x direction is represented by u 

normalized by /s e ic T m , ,i pT T and eT  are the temperature ion, positron and electron plasma, 

the particles' masses are em  for electrons and im  for ions, iP  is pressure and 
xD  describes the 

conformable fractional differential in relation to x, 
x x xD D D   the twice conformable fractional 

differential in relation to x. Ions are thought to have a relatively small relativistic influence, which 

can be expanded to 
 

2 2 2 21/ 1 / 1 / 2 .u c u c    
 
 

Through the application of reductive perturbation techniques, the scale's new stretching 

coordinates (time and space) are provided as
 

 
3

, ,x V t t   
  

 
                                        (5) 

where  , is the small expansion parameter, which is proportional to the perturbation's amplitude, 

serves as an indicator of the system's nonlinearity strength. Here, V denotes the fractional spatial 

phase velocity of the wave propagating along the x-direction. The fractional operator can be 

represented in the following form 

3, , .x x tD D D D D V D D      

                             (6) 

Substituting the operators in equation (6) into equations (1), (2) and (4) we have 
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The dependent variables ni, pi u and φ can be expanded in the following manner within the power 

series of   as 
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Since 2 21 / 2 ,u c   so equations (8) and (9) can be written in this form 
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(13) 

Using (11) in equation (7) and collecting terms of   in the lowest order, from equation (7), one can 

obtain:  
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Using (11) in equation (12) and collecting terms of   in the lowest order, from equation (12), one 
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 Using (11) 

in equation (13) and collecting terms of   in the lowest order, from equation (13), one can obtain: 
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By substituting equation (11) into equation (10) and collecting terms of the lowest order, one can 

derive the following expression from equation (10):  
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q q n n n

q q



        


       


      




 

       

           

          

   

    1 1

2
2 2

1 2 1 2

)( 1) 0,

( 1)(1 ) ( 1)( 3)(1 )
: .

2(1 ) 8(1 )

i

i

n

q a q q a
D n

a a







 
   

  

    
  

 

 

Doing the conformable factional integration and using the boundary conditions,
 

1 1 1 1 10, 0, 0, 0, 0 at ,i in v p u                          (14) 

to obtain the subsequent perturbed first-order quantities: 

 

 

 

1 1 12

1 0

0
1 12

1 0

1 12

0

1 ( 1)(1 )
,

2(1 )[ 3 ]

,
[ 3 ]

3
,

3

i

i

q a
n

aV u

V u
u

V u

p
V u


 

  




  


 

 
 

 


 

 


 

                   (15) 

Also, we get the (1+1) nonlinear fractional KdV model may be created 

1 1 1 1 2 1 0,D A D A D  

                                                  (16) 

The formula mentioned above represents the well-known one-dimensional space-time fractional 

KdV equation, which is highly valuable for studying the nonlinear propagation of ion-acoustic shock 
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structures within the plasma system under investigation. The following forms are derived for 

equation (16) the nonlinearity 1A , and dispersion 2A : 

2

2 0 2
1 1 02

1 0 0

2

0 0 1

2 ( ) 61
( )

2

( 3)(1 ) 1 9 1
,

4( )(1 ) 2

V u
A V u

K u u

q a K

V u a V u K

  
 



 

   

 
    

 

  
   

    

                                     (17) 

2
21

2 0

0

, ( ) 3 .
2( )

K
A K V u

V u


 


   


                                                 (18) 

From first equation of (15) we have 

 
2

1 0

1 ( 1)(1 )
.

2(1 )[ 3 ]

q a

aV u



  

 


 
 

So the fractional phase velocity takes the formulae  

0

1

1 2(1 )
3 ,

( 1)(1 )

a
V u

q a


  

 
   

  
                      (19) 

from the explicit formulae of the phase velocity V, we find an inverse relation between V and the 

fractional order   this means that when   increases the phase velocity V decreases and vice versa.    

We use the F-expansion approach to create exact analytic solutions for the fractional space-

time KdV model. The F-expansion approach is an efficient and straightforward algebraic technique 

for determining the precise solutions to nonlinear evolution problems [Wang M. L. and Li X. Z., 

2005] , [Li W.-W., Tian Y., and Zhang Z.2012], which has been used to solve several nonlinear 

equations. Consider the fractional space-time KdV equation in the current form, as indicated in 

Equation (16). We apply the traveling wave transformation as 
1 1( , ) ( ),       and 

( ) / ,k       . Thus, Equation (16) is converted into the following ODE 

3
31 1 1

1 1 2 3
0,

d d d
kA k A

d d d

  
 

  
                                           (20) 

The fractional space-time KdV model can be solved by using the F-expansion method as 

 
2 4

1 0

1

( ) ( ), 0, ' ,
N

j

j N

j

a a F a F A B F C F  


                   (21) 

with 0 1, ,..., Na a a are arbitrary constants in this case. N= 2 can be obtained by balancing the highest-

order linear partial derivative term and the highest-order nonlinear term in Equation (20). Equation 

(20) has a solution that looks like this 
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2

1 0 1 2( ) ( ) ( ),a a F a F                                                (22) 

From equation (21), we have 

 

 

2 41
1 2

2 2 2 3 2 41
1 0 1 0 2 1 1 2 2

3
2 3 2 41

1 2 1 23

( ) ,

( ) 2 ,

4 6 12 ,

d
a a F A B F C F

d

d
a a a a a F a a F a F A B F C F

d

d
a B a BF aCF a CF A B F C F

d














   

      

     

      (23)
 

Substituting equations (23) to (20), we have 

          
   

 

2 2 2 3

1 2 1 0 1 0 2 1 1 2 2

3 2 3 2 4

2 1 2 1 2

( ) 2

4 6 12 0,

a a F kA a a a a a F a a F a F

k A a B a BF aCF a CF A B F C F

      

      


       (24) 

Collecting the coefficients of ( ), 0,1,...F i  and setting the coefficients equal to zero, we have the 

following system of algebraic Equation 

0 3

1 1 0 2

1 2 3

1 1 2 1 0 2

2 3

1 1 2 2

3 2

2 1 2 2

: [ ] 0,

: [ 4 ] 0,

: 2 [ 3 ] 0,

: [ 12 ] 0.

F a k A a A k B

F k A a a k A a A k B

F a k A a A k C

F a k A a A k C





   

    

 

 

                            (25)
 

Solving this system, we obtain the following solution for the parameters 0 1 2, , ,a a a  and k  as  

3 2

2 2
0 1 2

1 1

4 12
, 0, .

A k B A k C
a a a

A k A


    

                             (26) 

The electrostatic potential can be determined using IASW solution by substituting from Equation 

(26) into (22); we have 

3 2
22 2

1

1 1

4 12
( ) ( ) , .

A k B A k C k
F

A k A

   
   



 
                    (27) 

Equation (27) is the general solution depending on choosing the parameters A, B, C, and the 

corresponding function F; we recommended reference [Wang M.. L. and Li X.Z.2005], for more 

information about the F expansion method. Using this technique, we can obtain the general exact 

solution, including single and combined Jacobi elliptic function solutions, soliton-like solutions, 

solitary wave, and trigonometric function solutions. 

Case 1: when 
2 21, (1 ), ,A B m C m     and ( ) sn( , )F m    

 
3 2 2 2

22 2
11

1 1

4 (1 ) 12
( ) sn( , ) , .

A k m A k m k
m

A k A

   
   



  
      (28) 
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Case 2: when 
2 2 21 , 2 1, ,A m B m C m      and ( ) cn( , )F m    

 
3 2 2 2

22 2
12

1 1

4 (2 1) 12
( ) cn( , ) , .

A k m A k m k
m

A k A

   
   



  
       (29) 

Case 3: when 
2 21, 2 , 1,A m B m C      and ( ) dn( , )F m    

 
3 2 2

22 2
13

1 1

4 (2 ) 12
( ) dn( , ) , .

A k m A k k
m

A k A

   
   



  
      (30) 

Case 4: when 1, 2, 1,A B C    and ( ) tanh( )F     

 
3 2

22 2
14

1 1

8 12
( ) tanh( ) , .

A k A k k

A k A

   
   



 
                    (31) 

Case 5: when 0, 1, 1,A B C    and ( ) sech( )F     

   
3 2

22 2
15

1 1

4 12
( ) sech( ) , .

A k A k k

A k A

   
   



 
                  (32) 

and so on.   

The fact that the fractional KdV equation recovers classical results when  1  , validates the 

theoretical framework for fractional equations and establishes that the fractional approach can extend 

classical results into more generalized contexts. This extension is particularly valuable in fields such 

as fluid dynamics, nonlinear optics, and plasma physics, where wave dynamics often exhibit 

complex behaviors that cannot be fully captured by traditional models. Fractional calculus provides a 

more flexible and accurate tool for studying such phenomena, offering deeper insights and potential 

for more precise modeling in these fields, advancing both scientific understanding and technological 

applications. 

The results obtained for correspond to the well-known solutions of the KdV equation. This 

observation highlights the accuracy and consistency of the methods deriving the fractional KdV 

equation. Such findings validate the theoretical framework and underscore the applicability of 

fractional calculus in capturing and extending classical results to scenarios involving fractional 

orders. This capability is pivotal in various fields, including fluid dynamics, nonlinear optics, and 

plasma physics, where understanding and manipulating wave dynamics are essential for advancing 

scientific understanding and technological applications. 

3. Summery, discussion and open problems   

This study addresses the derivation and physical significance of the one-dimensional nonlinear KdV 

equation, particularly in the context of dissipation quantum plasma. The emergence of the KdV 
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equation here is tied to the study of shocks and the propagation of nonlinear IASWs within plasma 

systems, using reductive perturbation theory. This theory is a common analytical technique used to 

reduce complex nonlinear PDEs to simpler forms, allowing for the study of wave phenomena like 

shocks and solitons. The KdV equation is of great importance in various physical fields, especially in 

understanding nonlinear wave propagation in plasma physics, fluid dynamics, and other areas 

involving wave-like phenomena. In quantum plasmas, where dissipation effects are significant, the 

KdV equation provides insights into the behavior of nonlinear waves, such as how solitary waves 

form, propagate, and interact under dissipation. 

The F-expansion method, a mathematical technique for solving nonlinear PDEs, was 

employed to solve this one-dimensional KdV problem, specifically focusing on ions within solitary 

traveling waves. The F-expansion method allows for finding exact analytical solutions of nonlinear 

wave equations, which is critical in studying the dynamics of solitary waves in plasma, especially 

when the system's complexity requires more advanced solution techniques. This method enhances 

our understanding of how these solitary waves behave, and helps in analyzing their properties, such 

as speed and amplitude, under varying conditions. 

This study discusses the IAWs in complex plasma environments, where solutions to the 

governing equations are derived, revealing key dependencies on several plasma parameters. These 

parameters include positron concentration, temperature ratios between electrons and positrons as 

well as ions and electrons, ion kinematic viscosity, and the nonextensive behavior of electrons and 

positrons. The inclusion of nonextensivity refers to the departure from traditional thermodynamic 

equilibrium, where the distribution of particles does not follow a Maxwell-Boltzmann distribution 

but instead reflects more complex dynamics often seen in plasmas or astrophysical environments. A 

central focus of the study is the significant influence of fractional order on the phase velocity of 

IAWs. The phase velocity of these waves is critical in understanding wave propagation in plasmas, 

as it is affected by factors like the wave's energy, the type of plasma, and the underlying physics 

governing the system. The fractional order adds a new layer of complexity to the dynamics, 

potentially offering more accurate descriptions of wave behaviors in environments where traditional 

integer-order models fall short, such as in complex or highly turbulent plasmas. 

The study’s findings shed light on how these intricate plasma parameters, including 

nonextensivity and the fractional order, impact the propagation of ion acoustic waves. This has 

important implications for understanding fundamental astrophysical processes, such as those 

occurring in stellar atmospheres, interstellar media, or other cosmic plasma environments. By 

incorporating fractional calculus, the study opens up new avenues for analyzing and modeling 
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plasma dynamics in a more comprehensive and nuanced way, ultimately enhancing our 

understanding of wave phenomena in both terrestrial and astrophysical contexts. 

Future studies could apply the derived fractional KdV-like equations to real astrophysical 

systems such as the interstellar medium, solar winds, or magnetospheres, where complex plasmas are 

prevalent. Likewise, laboratory experiments simulating space and astrophysical plasmas could help 

validate the theoretical models and provide direct comparisons with observed data. Further 

investigation into the nonlinear behavior of ion acoustic waves, especially in the context of fractional 

plasma models, would be valuable. Nonlinear wave phenomena like wave steepening, shock 

formation, and soliton interactions could be studied to understand how fractional order affects wave 

stability and energy transfer in plasmas. 
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