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Abstract:  

 This paper aims to combine the constructions of classical 

Steenrod operations, such as homogeneity operations on 

polynomials on ZP and cohomology of topological spaces, 

where p is a prime integer. Cohomological processes are 

natural-to-natural transformations, and then we define the 

characteristics of Steenrod processes and we define what we 

are aiming for, so we will proceed with the construction. This 

will be used space-wise, and then make sure that the build 

we're doing implements Steenrod operations; in the odd case, 

there won't be sufficient space in the project for this. We have 

included several immediate applications, and then we will 

briefly discuss the build we have completed and propose that 

further development should continue from this point. Lastly, 

we have some necessary details and calculations to ensure the 

smooth functioning of the build in the field.                                                  

 KEYWORDS: Steen rod square, power operation, vector 

bundles, characteristic classes, cohomology theory, homology 

theory, convex function.                                   
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Introduction: 

In algebraic topology, so-called Steenrod squares are the arrangement of homogeneities on regular 

cohomology with coefficients in Z2 that are homogeneous to the suspension (“stable homogeneities”). 

They are special examples of energy processes. Steenrod processes are power-and-energy processes 

arising from the cup product's commutative but modest version of commutativity, involving operations 

that take powers of pth. 

In 1958, Adams used it to compute sets of stable homogeneous spheres, and in the same year, Milnor 

proved that Steenerod algebras and dual algebras have structures of Hopf algebras. (Elhamdadi, M. 

2003). The Steenrod squares play a crucial role in algebraic topology, particularly in the study of 

cohomology operations. By understanding their properties and constructions, we can gain deeper 

insights into the structure of various algebraic objects and their applications in geometric contexts. 

Definition 1:  

In terms of Steenrod operations we define Stiefel–Whitney characteristic sw(ξ ) as factors of 

cohomology in a group G, (hom) of degree i is a morphism  

 θ: Hom
*
(  , G) → Hom 

*+i
( , G) an operation from the topological space class to the set class. 

(Husemoller, D. et al., 2008) (122-125). To introduce the Steenrod process we must know Bockstein 

symmetries as examples of cohomology symmetry operations. 

Steenrod square: 

For cohomology homogeneous over Z2 from two components, there is a unique process Stqi: Hom
*
(, F2) 

→ Hom
*+i

 (,  Z 2) of i  degree then Stq
i  navigates with commentary and, for x ∈ Hom 

i
(X, Z2), Stq

i
(x) = 

x
2
, the cup square. (Husemoller, D. et al., 2008) (123-124). Then operation Stq 

i
 is called the Steenrod 

square                                                                                                                                                

Definition 2: 

For   fixed topological space, from sequence   

             

 The operation Stq
n
 are cohomology operations 

            (       )        (    ) 

This is also known as the Steenrod square Stq
1
, hence of morphisms in the homotopy category. (Stq

1
) 

called the Bockstein homomorphism.
 
  

  The       fulfill the following requirements. (Husemoller, D. et al., 2008) (123-124). 

(1) In degree 0, Stq
0
 is the identity, and Stq

i
|Hom 

n
 ( , Z2) = 0   for i>n. 
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(2) (Cartan's formula), for x, y ∈ Hom
*
(X,  Z2), then 

                                           (  )   ∑     ( )    ( )        

Multiproduct version is 

    (         )  ∑     ( )
(   )       ( )

(   ) ( )      ( )     

( )          (   )       ( )      ( ) 

(4) (Adem's relations), for 0 < m < 2n, the iterate of     satisfies 

                                            ∑ (
     
    

)             
 
 

[
 

 
]

   
  

( )          ( ( ))   (     ( )), where   is the suspension map. 

When p = 2 then θ
i
 = Stq

i
, that gives Steenrod squares      . 

For p is odd, then we have c· θ2i(p-1) = P
i
 and c · θ2i(p-1) +1 = βP

i
, that gives Steenrod 

powers, where c is a constant. 

For      on low-dimensional characteristic we have the following theorem.  

Theorem 1:
 
 

On low-dimensional categories, we have the following Steenrod operations     : 

Consider to one and two dimensions we have. 

(1) If x ∈ Hom 
1
 (X, Z2), that we have        (  )  (

 
 )  

   
 
         

 

(2) If y∈ Hom
2
(X, Z2) and if Stq

1
(y) = 0, then       (  )  (

 
 

)      
         

 

and 

                           Stq
2i+1

(y
m

)= 0. 

Proof: By induction on m, when m = 0 is clear.  

Case (1) is illustrated as following formula. 

Stq
i
(x

m
 ) = Stqi(x.x

m−1 
) = Stq

0
(x).Stq

i
(x

m−1
 )+ Stq

1
(x).Stq

i−1
(x

m−1

) 

              

   
1   1  

               . 
1

m i m i
m m m

x x
i i i

 
      

       
       

For cases of Adem's relations we have followed concept:
 
 

(1) When n = 1, we have 1 ≤ n, one terms for j = 0, thus, we have sum corresponding,  

                                  (     
 

)        {      
i 

 i 

  
 

      
     

 

with simple formula Stq
1
Stq

1
 = 0, Stq

1
Stq

2
 = Stq

3
,  
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Stq
1
Stq

3
 = 0, and Stq

1
Stq

4
 =     

 
(Husemoller, D. et al., 2008) (125-126). 

(2) There are only two terms within the sum of the two, according to 

i = 0 and i = 1, for n = 2. This is the case that 2 ≤ n. So, in this instance, we have  

            (     
 

)        (     
 

)             

This splits into two cases focusing on n mod 4. 

                
      {

       
  or       (mo  )   

       or      (mo  )
 

with simple cases Stq
2
Stq

2
 = Stq

3
Stq

1
, Stq

2
Stq

3
 = Stq

4
Stq

1
 + Stq

5
,  

Stq
2
Stq

4
 =    Stq

1
 + Stq

6
, Stq

2
Stq

5
 = Stq

6
Stq

1
, and Stq

2
Stq

7 
= Stq

8
Stq

1
 + Stq

9
. 

On integer Z, the induce effect of binomial (
 
 
) is the efect of x

i
 in the polynomial  

(1 + x)
n∈ Z[x]. Here, integers defined within the modulos of 2 

Example (Equivalencies of Two Mod 2):  

For field Z2 = {0, 1} of two elements for n ∈ Z. (Husemoller, D. et al., 2008). 

                                                    ( 
 
 
)      {

   
   

  
   
   

        
   

  

and 

                                                 ( 
 
 
)      {

   
   

  
     
     

(    )
(    )

  

Definition 3:  

A bun le ξ, represente  by ξB, comprises a Thom space that corresponds to the divide bundle 

Dis(ξ)/Sp(ξ). 

Then the map σ: Hom
i+n

(Dis(ξ)/ Sp(ξ)) → Hom
i+n

 (ξB) is symmetric, and then the Thom map is defined 

as ψ: Hom
i
(B) →    ̅̅ ̅̅ ̅̅ ̅i+n 

(ξB) to be ψ = σϕ'. (Husemoller, D.  1994) 

Theorem 2:
 
 

By cohomology characteristic Uξ ∈ Hom
n
(Dis(ξ )/Sp(ξ )) and the complete Steenrod process  Stq = ∑0≤i 

Stq
i 

. (Husemoller, D. et al., 2008) (132-133), we generate a complete Stiefel-Whitney characteristic 

Stq(Uξ )= sw(ξ )Uξ  or sw(ξ )= φ 
−1

(Stq(Uξ )). 

Dis(ξ) is a bun le o   isks, an  Sp(ξ) is a bun le o  spheres.               

Proof: By the splitting principal bundle, we can check a formula by doing it only for 

              , a sum of line bundles, we have a cup product 

decomposition of                of 1-dimensional character     related to   . Only       is nonnull 
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on Ui, and it is      (  )     
 . Hence, through Cartan's formula of multiproduct, we have the 

computation bellow 

    (  )       (        )    ∑        ( )
       ( )

       

 

 ( )      ( )

 

  ∑   ( )
       ( )

 

 

 ( )    ( )

(       )      (           )(       ) 

via the splitting linking to cohomology, we see 

    (  )       ( )  . This completes the theorem. (Husemoller, D. et al., 2008) (132-133). 

Definition 4 (Thom):
 
 

The Stiefel- Whitney characteristic swi(ξ) is denoted by ϕ
-1

(Stq
i
Uξ). 

                                               swi(ξ) =ϕ
-1

(Stq
i
Uξ). (Marathe, K. 2010). 

Where ϕ called Thom isomorphism  

  Equivalently, swi(ξ) is the characteristic that ϕ(swi(ξ)) = Stq
i
 ϕ (1), In terms of the complete square 

Stq, the complete Stiefel-Whitney characteristic  

sw(ξ) = sw0(ξ) + swI(ξ) + ...   is given by ϕ
-1

(Stq
i
) ϕ (1). 

Theorem 3: 

The Euler characteristic, denoted by eu(ξ), is hel  by the natural symmetric  

Hom
n
(B; Z) → Hom

n
(B; Z2) to the upper Stiefel-Whitney characteristic, swn(ξ). (Giansiracusa, J. et 

al., 2003).  

Proof. It is obvious that the cohomology characteristic   element corresponds to the mod2 

cohomology characteristic   and  ⌴   connected to Stq
n
( ) i  we apply surjection  actor Z →Z2 to 

both sides of eu(ξ) = φ
-1

( ⌴ ). Thus, φ
−1

( ⌴ ) is associate  with φ
−1

Stq
n
( ) = swn( ). 

The natural symmetric Hom
n
(B; Z) → Hom

n
(B; Z2) holds the Euler characteristic denotes by eu(ξ) to 

upper Stiefel-Whitney characteristic swn(ξ). (Giansiracusa, J. et al., 2003). 

If we apply surjection factor Z →Z2 to two sides of eu(ξ) = φ
-1

( ⌴ ) then with clear proof the element 

of cohomology characteristic   correspond to the mod2 cohomology characteristic    and  ⌴  related 

to Stq
n
( ). Hence φ

−1
 ( ⌴ ) related to   φ

−1
Stq

n
( ) =swn( ).                        

Definition 5(Poincaré duality): 

For a compact m-dimensional manifold M , for   ∈ Hom 
r
(M ) and fo r   

  ∈ Hom 
m−r

(M ). When   ×   is an element, we can define a direct product 

〈 〉: Hom 
r
(M ) × Hom 

m−r
(M ) → R  by 

http://www.sst.journalnea.com/


Composition of Steenrod Square ………   

The Scholar Journal for Sciences & Technology Vol .3 -NO.5 -29/01/2025 
http://www.sst.journalnea.com 

78 

                                         ⟨   ⟩  ∫    
 

                                                              (1) 

The direct product is a bilinear operation. Additionally, it is non-monogamous, meaning that if   = 0 

or   ≠ 0, the pairing 〈  ,  〉 cannot vanish in a similar manner.  Thus, equation (1) define as a dual 

of Hom 
r
(M ) and  

Hom 
m−r

(M ), Hom 
r

(M ) ∼= Hom 
m−r

(M )called the Poincaré duality. (Nakahara, M.2002). 

Manifold for the Stiefel-Whitney characteristic in terms of Wu's Formula: 

The Steenrod squares Stq = ∑i Stq
i and the Stiefel–Whitney characteristic sw(ξ) of a bundles are 

connected by their form sw(ξ) = φ 
−1 

(Stq(Uξ )). Using Poincare's dualism and its relation to UM, we 

derive the Wu characteristic and its relation to the Stiefel-Whitney characteristic of the bundle of 

tangents. (Giansiracusa, J. 2003; Milnor, J.W. 1981). 

Corollary 1: 

 Let Stq
tr
: Hom (X ) → Hom (X ) the complete Steenrod square is the transpose of 

Stq:Hom*(X ) → Hom
*(X ). In specially case, we take S tq (n), m =n, Stq

tr
(m) f o r   

n ∈ Hom *(X ), m ∈ Hom*(X ). (Husemoller, D. et al., 2008). 

  Definition 6:
 
 

 Let  ̅ be a closed manifold with a Poincare´ duality isomorphism. 

D: Hom 
i
( ̅) → Homn- i( ̅), a n d  l e t [ M ] b e  fundamental characteristic.  The Wu characteristic 

of  ̅ is   

                      V=D
−1

(Stq
tr

([M])). (Husemoller, D. et al, 2008; Husemoller, D. 1994). 

The characteristic of the Wu characteristics is that  

〈   ( )〉 =  〈        (   )〉 =  〈   ( )    〉  =  〈            〉  = 〈      〉 . (     ) means cap product. 

Theorem 4:
 
 

Let  ̅ be a closed differentiable manifold. Then, the Stiefel-Whitney characteristic 

  ( ̅)      ( ( ̅)) the bundle of tangents is provided by the Wu characteristic's Steenrod 

square:  ( ̅)      ( )  (Husemoller, D. et al., 2008) (132-133). 

  Proof: see (Husemoller, D. 1994) (275-276). 

 Association to Bockstein homomorphism 

If Stq
1
 is the Bockstein homomorphism of the short exact sequence Z2→Z4→Z2. 
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The Steenrod squares are harmonic with comment symmetry. Therefore, Steenrod squares are also 

known as stable cohomology operations. 

Association to Massey products 

We see that Massey product relation to Steenrod squares stq. 

 Let        ∈     (    ) such that their triple Massey product exists. Then the cup product of   

with the triple Massey product is independent of the ambiguity in the Massey products and equals the 

cup product of    with    and with the Steenrod square of   of degree    ( )    

  ⟨       ⟩              ( )  ( )  

Pontrjagin characteristic 

Definition 7: 

The nth Pontrjagin characteristic o  bun le ξ, the real vector bun le, is represente  by Pn(ξ), is (-1)
 nc

2n 

(ξ  C). Where P(ξ) is a member of Hom
4n

(B, Z). (Husemoller, D. 1994); Giansiracusa, J. et al., 2003). 

We explain P(ξ) = 1 + P1(ξ) + ... ∈Hom*(B, Z) to be the complete Pontrjagin characteristic of real 

vector bun le ξ are generated, over the algebra of Steenrod powers, by those of the form       

The Whitney sum proposition can only be satisfied as shown below: 

                                                   2(p(ξ η) - p(ξ)p(η)) = 0  

Let q: RP
2n-1

 → CP
n-1

. Each real line specified by z ∈ Sp
2n-1

 can be assigned an isomorphism where 

{x, -x} determines the complex vector bundle. 

 By definition, we have Pn(ξR) = (-1)
 nc

2n(ξ  C)  where(ξ  C) is complex be converted to a real by an 

equation P1(ξ)=ch1(ξ)
2
 -2ch2(ξ), where ch means chern characteristic. (Husemoller, D. et al, 2008); 

Milnor, J.W. 1981). 

Theorem 5: 

For any smooth even-vector bun le ξ,  pn(ξ) = eu(ξ)
2 

. (Milnor, J.W. 1981). 

Proof: Pn(ξ) = (-1)
 nc

2n(ξC) = (-1)
n
eu (ξCR ) = ±eu(ξ

n  ξ
n
) =  (-1)

n
eu (ξ)

2
. 

Instead of using the curvature two-form, it is frequently represented as p(M) in relation to the tangent 

bundle. Since   ( )      denotes each Pontrjagin characteristic,   ( )  disappears as a differential 

form. (Nakahara, M. 2002). 

Lemma 2:  

The Pontrjagin characteristic o  a complex vector bun le (ξ) with n  imensions is  etermine  by the 

Chern characteristic (Ch) via an equation. (Cohen, R. L. 1998); Janis, L. 2014). 

         1 P1(ξ) + P2(ξ)-... =(1-ch1(ξ) +ch2(ξ) -…) (1+ch1(ξ) +ch2(ξ) +…). 
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Proof:
 
ch(ξ RC) =

 
ch(ξ)ch(ξ

*
) =∑   

      
 ( ) ∑  (  )  

      
 ( ). Moreover, if k=1(mod2) then chk(ξ 

 C)= ∑  (  )  
        

 ( ) chk-1(ξ) =0. So, the sum of all even Chern characteristics is the total of 

every Chern characteristic. (Janis, L. 2014). Pontrjagin characteristic and Squares of odd-dimensional 

Steifel-Whitney characteristic we have the Wu characteristic in degrees     and (   )
  not an analysis 

Stiefel-Whitney characteristic homogeneous to Wu characteristic, in lower degrees. The most notable 

works in an analysis term not involving     but they are relating with squares mentioned above.  

For odd values of  , we utilize the torsion Pontrjagin characteristic. (Hisham, S. 2011) to achieve this. 

These characteristics are denoted as        with an index such that          , which aligns with the 

standard ith Pontrjagin characteristics. In cases where the degrees are      and involve 2-torsion, we 

have            ∈ Hom
4k+2

Z. By utilizing the Bockstein and Steenrod squares on the Stiefel-Whitney 

characteristic at degree     , one can establish these properties for a vector bundle E. 

            Then       ( )                ( ).  

The mod2 reduction            (    )           (     )  of these characteristics give exactly 

the required squares of Stiefel-Whitney characteristic         ( )          ( ) . As a result, we 

can identify an integral lift in the place where the squares represent the Wu characteristic. In the 

context given above, the integral lifts of the Wu characteristic correspond to the torsion Pontrjagin 

characteristic. 

Now we illustrate some examples and propositions in low degree. 

1. Degree 2: for normal bundle  :                
 . If     = 0, indicating a Pin+ structure, the torsion 

Pontrjagin characteristic    provides a lift to the Wu (2) structure. We could also find         (  ), 

where    the first Chern characteristic. 

2. Degree Six:                
  . If     = 0, indicating an orientable case (e.g. membrane 

structure), reduces to the square term     
  . The integral lift of the Wu characteristic in this situation is 

the torsion Pontrjagin characteristic    . We cannot 

     = 0   as then    , it would also be zero. 

3. Degree ten: Here     will involve   . As a result, we are unable to isolate a square word. However, it 

will be provided by the torsion Pontrjagin characteristic      . 

For instance, higher-order Stiefel-Whitney characteristics can be observed in an oriented 11-dimensional 

manifold    where      ( 
  )       ( 

  )      ( 
  )      (Hisham, S. 2011). This excludes all 

phrases involving       and     in    . 

We can now describe Steenrod squares in the geometry domain. 

 First, if X is a manifold with dimension d, one may generate characteristics in 
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 Hom
n
(X) by proper function        here V is a dimension d manifold, by intersection theory we can 

count n-cycle intersection points, as the pushforward f
*
(1) where 1 is the unit class in Hom

0
(V), as the 

Thom characteristic, or applying the basic characteristic in locally finite homology and duality. Using 

the last method, let's say that f has a normal bundle v since it is an immersion. Then Stq
i
(x)=f (sw

i
(v)) if 

    ( )  ∈     ( ). In essence, this is the Wu formula. 

That is, if sub-manifolds contain cohomology properties, such as cup product approximating 

intersection data, Steenrod squares are normal bundle data. 

The Steenrod squares          (    )        (    ) are basic cohomological functions. They 

indicate a map between the Eilenberg–MacLane spaces  (    )   (      )by the Yoneda lemma. 

By the Dold–Kan correspondence, this map should be expressible as a chain map  

     ̂             (   )   

We write sometimes        for the field with two elemens. 

Using operations and algebra of operations to explain some computations of the Steenrod operations on 

term of cohomology of a Hopf algebra over Zp.  

Let Hom  be the cohomology of the Hopf algebra A and investigate the Steenrod operations. Our goal 

is to apply these operations to    (the bundle space) in a few fascinating particular circumstances. 

(William, M. 1973) (327-336). 

We now discuss "Steenrod squares     
 , which are vertical, and compute Steenrod squares     

 , 

which are chain maps."  

     
    

      
                 

    
    

      
                   

 

Where      
       

   ,        
 =     

    

In our initial application, we consider an extension of cocommutative Hopf algebras:  

A → C → S. Let M be a commutative le t C-algebra and N be a commutative left  

S-algebra. Drawing parallels with group theory, we show that the action of B on      (   )  can be 

expressed directly as B's action on A. This involves Steenrod operations on    . 

Then       
        

  (           
 (    ))       

 (        
   (   ))  

                 
        

  (           
 (    ))       

   (        
  (   ))        

Then      
  acts on the cohomology of the Hopf algebra A, while      

 acts on the cohomology of B. 

(William, M. 1973) (327-336). 
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In the second scenario, let us consider a topological group G and a fundamental G-bundle E. The 

spectral sequence converges to     (  ⁄ ) (with coefficients in     ), and the Steenrod operations on 

E appear as: 

        
           ( )

    (    ( )    )           ( )
      (    ( )    )  

        
           ( )

    (    ( )    )           ( )
       (    ( )    )     

We demonstrate that      
  determines the cohomology of the Hopf algebra on 

    ( )         ( ). Additionally,      
   defines operations on the cohomology of the Hopf 

algebra     ( ).                                                                                                                                           

To satisfy the Cartan formula and Adem relations of vertical and diagonal squares, we use the Serre 

spectral sequence in our final application to ensure the Serre spectral sequence. To satisfy a fascinating 

commutation relation of vertical and diagonal squares, we find that vertical and diagonal squares satisfy: 

see sec6 (William,M. 1973) (327-336) .                                                                                                         

       
       

 
        

 
      

   
 

Where      
   

                 

Conclusion: 

 Our study shows a deep composition of Steenrod square operations satisfies the following relations 

and calculate that the Steenrod squares with some applications 

          (    )        (    )  are characterized by the following 5 axioms: 

Our study demonstrates a deep composition of Steenrod square operations that meets the following 

relations and calculates that the Steenrod squares          (    )        (    )  , with some 

applications are defined by the following 5 axioms: 

1. Naturality:          (    )        (    ) is an additive homomorphism and is natural 

with respect to any      , so    
 
(    ( ))       (  ( )) . 

2.      is the identity homomorphism.  

3.     ( )      for       (    ). 

4. If      ( ) then     ( )    

5. Cartan Formula:     (   )  ∑     ( )      (      ) 

6. Additionally, the Steenrod squares have the following characteristics: 

      is the Bockstein homomorphism   of the exact sequence      0→  →  →  →0 
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 In cohomology,      commutes with the relating morphism of the long exact sequence. Specifically, 

it commutes in terms of suspension     (    )        (∑    )    

 They satisfy the Adem relations, which are explained below. Similarly, the reduced      powers 

are characterized by the following axioms for p > 2. 

 

1. Naturality:        (    )       (   )  (    ) is an additive homomorphism and natural. 

2.    is the identity homomorphism. 

3.    is the cup       power of degree   . 

4. If        ( )  then   ( )    

5. Cartan's Formula:   (   )  ∑   ( )     
(      )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sst.journalnea.com/


Composition of Steenrod Square ………   

The Scholar Journal for Sciences & Technology Vol .3 -NO.5 -29/01/2025 
http://www.sst.journalnea.com 

84 

 

REFERENCES: 

[1] - Cohen,R. L. (August, 1998). The Topology of Fiber Bundles Lecture Notes. Dept of Mathematics 

Stanford University. 

[2]-Elhamdadi, M. [2003]. On the Steenrod operations in cyclic cohomology, University of South 

Florida,Tampa, FL 33620, USA , South Valley University, Aswan, Egypt. 

[3]- Giansiracusa, J and Deviate. (June 9, 2003). Stiefel-Whitney Characteristic.   

[4]- Hisham, S. (21sept2011). Twisted topological structures related to M-branes II:Twisted Wu and 

Wu
c
 structures, University of Pittsburgh .Pittsburgh, PA 15260 Pennsylvania, USA. 

[5] - Husemoller, D. (1994). Fibre Bundles. Third Edition. Editorial Board. (J.H. Ewing F.W. Gehring 

P.R. Halmos.), Berlin. 

[6]- Husemoller, D. et al, (2008). Basic Bundle Theory and K-Cohomology Invariants, Lect.Notes 

Phys.726 (Springer, Berlin Heidelberg), DOI 10.1007/ 978-3-540-74956-1. 

[7] – Janis, L. (2014). Characterizations of the Chern characteristic classes, Waterloo, Ontario, Canada. 

[8] - Marathe, K. (2010). Topics in Physical Mathematics, DOI 10.1007/978-1-84882-939-8 1, 

Springer-Verlag London Limited. 

[9]- Milnor, J.W. (1981); lectures on characteristic classes. University of Tokyo Press, Japan. 

[10]- Nakahara, M. (2002). Geometry Topology and physics (second edition) Kinki University, Osaka, 

Japan. 

[11]-William,M. singer, (janury1973). Steenrod squares in spectral sequences. II. Fordham university. 

New York, USA. (327-336). 

 

 

http://www.sst.journalnea.com/

