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1. Introduction 

If       (       ⁄ ) is projected orthogonally onto    by  , where    is an open unit disk, 

   {| |   } , is standard Hardy space, refer to (P. L. Duren 1970). for the fundamental definitions),    

is the Toeplitz operator defined on     for       using the following formula:      (  )  A recent 

investigation into truncated Toeplitz operators was started by Sarason (N. A. Sedlock. (2011). On the 

model spaces         (   )   these operators   are defined, where        (  ), where ϑ is an 

inner function. In this case,    is orthogonally projected onto    by   . Written otherwise,    represents 

the compression of    to   . The set in (N. A. Sedlock. 2011).: 

    {                        } 

is described as follows: When functions         exist, then a bounded operator   on     belongs to   

      
                                                                                            ( ) 

Where  ( )   
 ( )  ( )

 
,and the rank-one operator is shown by 

     .      ( )  〈    〉    

 

The condition in (1) is difficult to develop because it relies on the presence of the functions         , 

which establish which bounded operators on       . In the case where    is finite dimensional, we will 
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define a more explicit condition. A limitless n-dimensional model space is defined as   , where B is a 

finite Blaschke product with zeros {       }.It's generally knowledge that all functions with the type 

  are are constructed of 

                                                       ( )  
 ( )

∏ (     )
 
   

                                             ( ) 

where   can be any polynomial with a maximum degree of    . Additionally, 

                                                      ( )   
   ( ) ( )

    
                                           ( ) 

is the    resembling kernel such that       for each     

 ( )  〈    〉             

The formula above uses    inner product. 〈   〉  ∫  ( ) ( )
 

 

|  |

  
, where      . Using (2) and 

interpolating, we can easily demonstrate that the set {   
      

} serves as a basis for    for multiple 

points          . If the zeros         of   are distinct, {   
      

} forms a non-orthonormal basis 

for   .    
( )  

 

     
. 

Dimensional    defines the complex vector field of all linear transformations on   , given in 

fundamental linear algebra. The dimension of    is      by Sarason (P. L. Duren 1970). Naturally, this 

raises the question of which linear transformations on       . This is the first theorem that we have. 

Remark (1.1)  

(1) The principal horizontal values and first row form a matrix representing a truncated Toeplitz 

operator according to Theorem (1.8). Observe that since    has size     , similar matrices should also 

have dimension     . 

(2) The first row is not particularly noteworthy. An analogous outcome, for instance, can be achieved if 

the first column and entries along the major diagonal define the representation matrix. 

(3) The demonstration of this theorem additionally includes an algorithm for generating the symbol   

from matrix elements. 

(4) When    , the distribution matrix (
        
        

) represents the truncated Toeplitz operator in terms 

of the basis {   
    

} if and only if   (  )          
 (  )  {   

    
} is a valid basis for   , although it 

is not orthonormal. The Clark basis {         }, is an essential orthonormal basis for   . It consists of 

normalizing vectors that correspond to the eigenvalues      for the Clark unitary operator    where 

   . This takes the following shape: Because   is an open area of   with a finite Blaschke product, 

the kernel function    gives the analytical function on   for any    . Typically, it is shown that 

     B and: 

 

   ( )  〈    〉                                                                                                    ( ) 

Using the assumption that    never disappears on  , a routine exercise will demonstrate that for any 

   , there are precisely   different locations           for which: 

 (  )  
   ( )

   ( ) 
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One more standard workout will demonstrate that ‖   ‖
 
 |  (  )|, hence, the normalized kernel 

functions are formed. 

                                                              
   

√|  (  )|
                                                          ( ) 

It shows out that the eigenvalues of the Clark unitary operator are the points        . 

                                                
 ( )   

  | ( )| 
   (    ̃ )                                     ( ) 

         , the appropriate eigenvectors. 

                                                       ̃ ( )   
 ( )   ( )

   
                                                   ( ) 

It is observable (P. L. Duren1970). that for any  ̃               . Therefore,   . has an 

orthonormal basis of {         }. In-depth research and generalization have been done on the 

operators   , which Clark (N. A. Sedlock. 2011). Initially examined (D. Sarason, John 1994 and 

Bu, Q., Chen, Y. & Zhu, S. 2021). The matrix shows    with regard to this basis is diag (       ), 

as determined by the spectral theorem. Our subsequent theorem substitutes the kernel functions' 

basis {   
      

}  with the Clark basis {         }. 

Theorem (1.2): Take   be the finite Blaschke product of degree   having    . A can be used to 

denote any transform that is linear in the space with    -dimensions   . 

A is only a part of      if and only if    (    ) ,the multidimensional representation of   in 

relation to the Clark basis {         } corresponding to  . 

       
√|  (  )|

     
(

 
  

  

 

√|  (  )|

(     )     
 

√|  (  )|
(     )    

)

           ( ) 

all        , and    . 

Remark (1.3):  As in the previous theorem, the elements along the main diagonal and the first row 

determine the matrix representation of a truncated Toeplitz operator. 

(1) An algorithm for obtaining the symbol   from the matrix entries will also result from the 

proving of this theorem. 

(2) If   is 2, the matrix (
        
        

) is the truncated Toeplitz operator's matrix representation with 

regard to basis {       } if and only if 

               

If we alter the basis {         } slightly, we get even more. Indeed, let 

     
   ( )

   ( ) 
          

 
 
(   ( )    (  ))

         
 

√|  (  )|
              ( ) 
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{         } is an orthonormal basis that, has the additional characteristic that, in addition to 

diagonalizing the Clark operator   , the matrix representation of any truncated Toeplitz operator with 

respect to this basis is complex symmetric, as shown by Garcia and Putinar in (Bu, Q., Chen, Y. & Zhu, 

S. 2021). If a matrix     , where   is the transpose, then   is complex symmetric. The Clark basis 

{         } is replaced with the new basis {{         } by the theorem that follows. 

Theorem (1.4): Assume that   is a finite Blaschke product with    ,and degree  . 

  can be used to represent any linear transformation on the n-dimensional space   . 

     if and only if    is complex symmetric and    (    ) represents   as a matrix with respect to 

the basis {         }that corresponds to   . 

     
√|  (  )|

  

 

     
(

 
  

√|  (  )|

(     )  
  

√|  (  )|
(     )    

)

          (  ) 

for all        ,    . 

Proof: we prove theorem (1.2) and theorem (1.4) together: 

Assume       and fix        . Let the points of   that {             }are those that  (  )  

   
     (  )     

             Remark (1.11) informs us that any member of    adopts the form 

∑      
    

 
    ∑      

    

 
   , regarding a few complex constants,      . Assume that     

     , where: 

                                                       
 
 
(   (  )    (   ))                                                 (  ) 

Theorem (1.4) can be established by using 

〈(∑      
    

 
    ∑      

    

 
   )        〉 the operator's matrix representation with regard to the 

basis {         }, Since {         } is an orthonormal basis for   , the `Fourier' expansion is available 

for every     . 

 ( )  ∑〈     〉   

 

   

( )  ∑
  

√|  (  )|
 (  )   

 

   

( ) 

and so 

 〈   〉  ∑
 (  ) (  )

√|  (  )|

 

   

                                                                                    (  ) 

First notice that 

   (  )  
  

√|  (  )|
    (  )  {

  √|  (  )|        

                            
  

Using the inner product formula given before in (12), we get 
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〈(    
   

)        〉  ∑
((   

    
)    ) (  )   (  )

√|  (  )|

 

   

  ((   
    

)    ) (  )
  

√|  (  )|
 

 
  

√|  (  )|
〈       

〉    
(  ) 

  
  

√|  (  )|

  

√|  (  )|

   (  )  (  )  {
|  (  )|          
                       

 

In a similar way, 

〈(   
    

)        〉  
  

√|  (  )|

  

√|  (  )|

   (  )   
(  ) 

                        
  

√|  (  )|

  

√|  (  )|

   (  ) (  )

      

   (  ) (  )

      
 

     
  

√|  (  )|

  

√|  (  )|

     
   

      

     
   

      
 

 |     
   

|
   

√|  (  )|

  

√|  (  )|

 

      

 

      
 

 |     
   

|
   

√|  (  )|

  

√|  (  )|

 

      

 

      

(   )  

(   )  
 

     |     
   

|
   

√|  (  )|

    

√|  (  )|

 

     

 

     
 

Using (11) is notion of   , the true nature,      
  

 
  Apply this characteristic to change the previous 

expression's final line in order to 

    
  |     

   
|
   

√|  (  )|

  

√|  (  )|

 

     

 

     
  

Putting this all together, we get 
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〈(∑     
    

 

   

 ∑     
    

 

   

)       〉

   | 
 (  )|        

|     
   

|
 
∑    

 

   

  

√|  (  )|

  

√|  (  )|

 

     

 

     
  

Partial fraction decomposition is used. 

 

     

 

     
 

 

     
(

 

     
 

 

     
)  

The identities in can be confirmed in (10). The requirements in (10), are then satisfied by any truncated 

Toeplitz operator's matrix representation with respect to the basis {         }. The inverse proof is 

almost identical to the converse proof in Theorem (1.8). By employing comparable computations to the 

Theorem (1.4) proof, it is demonstrated that 

〈(∑     
    

 

   

 ∑     
    

 

   

)       
〉   

  | 
 (  )|        

|     
   

|
 
∑     

 
   

 

√|  (  )|

  

√|  (  )|

 

     

 

     
 S 

Proceed with the remaining steps in Theorem (1.4) proof to establish Theorem (1.2). 

Remark (1.5): Any complex symmetric 2×2 matrix represents a truncated Toeplitz operator with regard 

to the basis {       }, according to the theorem for    . Sarason had noted this before (R.Garcia and 

M.Putinar, August 2007 & Balayan, L., Garcia, S.R., 2010). 

Sarason started talking about how the truncated Toeplitz operators are generated by the Clark unitary 

operators in some way in Remark (1.10) below, (N. A. Sedlock. 2011). In finite dimensions, the outcome 

is as follows. 

Theorem (1.6): Assume that        , where      , and that a Blaschke product of degree   is 

represented by  . Next, for any     , there exist polynomials  ;   with a maximum degree of  , such 

that 

                                                        (   
)   (   

)                                                   (  ) 

Proof: One can obtain the ensuing lemma from (P. L. Duren (1970). Here we provide evidence. 

Remark (1.7): 

(1) Sarason (P. L. Duren 1970). establishes that for any polynomial   and each    ,  (  )     . In 

reality, the spectral theorem for unitary operators and Theorem (1.6) may be extracted from the proof in 

(N. A. Sedlock. 2011). 

(2) Remark (1.9) will demonstrate that the polynomials   and   in (13) can be computed, in a sense, 

from  . 

Theorem (1.8): Let   be a finite Blaschke product of degree   with unique zeros        , and let   be 

any linear transformation on the n-dimensional space   .   is represented by the matrix    (    )with 

respect to the basis {   
      

}if and only if     . 
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       (
  (  )

  (  )
)(

    (     )      (     )

     
)                           (  ) 

Proof: Given a   that is in   , break   down as 

                                        

Now write    as          
       

, and see that (P. L. Duren 1970). 's second term, which is 

zero, is on the right. Thus, 

   {      
         }                                                                                          (  ) 

The zeros         of   are assumed to be different, and as a result, the functions 

 ̃  
( )  

 ( )

    
           , as a foundation for    serve as a foundation for      and  ̃  

( )  

(
 ( )

    
)            , form a basis for   . Based on the preceding discourse and equation (15),    is 

comprised of   . 

                                    ( )  ∑  (
 ( )

    
)

 

   

 ∑  

 ( )

    

 

   

                                        (  ) 

 

and the arbitrary complex numbers      . Add this to the identity. 

                                                                ̃    
   

                                                         (  ) 

And its adjoint to determine that the operators in    are of the following type in (P. L. Duren 1970). 

  ∑     
  ̃  

 

   

 ∑   ̃  
    

 

   

                                                                                (  ) 

where the complex integers    and   are. The matrix representation of the previously specified 

operator about the basis {   
     

}.will be determined shortly. We must first obtain a few 

formulas. With the definitions of    
 (3) and  ̃  

)  (7) and the replicating property of    
, we obtain: 

〈 ̃  
    

〉  {
         

  (  )        
        〈 ̃  

  ̃  
〉  

 

      
                                 (  ) 

As {   
      

}  gives a basis for   , we understand that , ̃  
 ∑   (  )   

 
   , 

  (  )for a number of complex constants. (19) can be used to calculate   (  )and obtain: 

                                               ̃  
 ∑

 

  (  ) 

 

      
   

 

   

                                      (  ) 
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The proof of Theorem (1.8) is now ready. Assume    has the structure shown in (18) and 

(    )           
, express    as a matrix with regard to the basis {   

      
}. We need for proof 

that 

     (
  (  )

  (  )
)(

    (     )      (     )

     
)                         (  ) 

A computation with (18), (19), and (20) will show that 

     
    

 (  )   
 ∑(

 

  (  )
∑

  

(      )(      )

 

   

)

 

   

   
  

Thus 

         (  )     
 

  (  )
∑

  

(      )(      )

 

   

  

From the formula, the unique characteristics in (21) follow. 

 

(      )(      )
 

   

     

 

      
 

  

     

 

      
  

The proof has now been completed in one direction. Let   be the set of all matrices that fulfill (14) in 

the opposite direction. These identities show that each 

   (    )    is uniquely determined by the entries along the diagonal and the first row. Moreover,   

is these entries' linear function.   is therefore a vector space with dimensions of     . As we've 

already established in (21), 

    {   
      }   , and    has dimension      according to Sarason's theorem.      as a 

result, this completes the proof. 

Remark (1.9): 

(1) Take note that one explicit foundation for   is {               }. 
Here,    is the matrix satisfying equation (14) with       ,        if 

     , and,        for all  .        (           ) is the matrix. To illustrate, if    , then 

   (
   
   
   

)       (
   
   
   

)       (
   
   
   

)  

   

(

  
 

   
  (  )

  (  )
 

(     ) 
 (  )

(     )  (  )

 
(     ) 

 (  )

(     )  (  )
 

)
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(

  
 

   

  
(     ) 

 (  )

(     )  (  )

  (  )

  (  )

(     ) 
 (  )

(     )  (  )
 

)

  
 

 

in the example above indicates the complex conjugation of each and every matrix entry—not 

the conjugate transpose. 

(2) If      
 

  (  )
   

  ̃  
  take note of the evidence above that 

  
        ∑  

 

   

                            {     
         }  

Comparable identities apply to    
 

  (  )
 ̃  

    
  These identities show how the set of    

operators {     
         }. has a linear dependence. For instance, a little study are going to 

show that the basis for   , which includes rank one idempotent, is the set {     
            

     }. 

(3)    from (18) can be computed with regard to the basis { ̃  
    ̃  

}.using comparable methods. 

The      element of this matrix is in this instance 

        
 (  )     

 

  (  )
∑

  

(      )(      )

 

   

 

and the prerequisite that must be met in order for a matrix (    ) to represent something from    

(relative to the basis { ̃  
    ̃  

}) is 

     
  (  )

  (  )
(
    (     )      (     )

     
)                  

Lemma (1.10): Assume that           ) are unique locations within  . Next, the top-ranked 

operators    
    

         
       

, possess linear independence 

Proof: Suppose            are complicated constants in such a way that 

                                                       ∑      
    

    

   

                                                     (  ) 

Given the linear independence of    
      

, there exists a      such that 

〈   
  〉       〈   

  〉                

Use the operator on the left side of (22) in this case to see that 

     
 ∑   〈     

〉    
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Nevertheless      since the vectors    
      

         
 are linearly independent. Select a suitable g 

now to demonstrate that     , and so forth. This is the theorem (1.6) proof. Since      , let 

       . Let T's points be         and        , so that 

 (  )     
  

    ( )

   ( )  

     (  )     
  

    ( )

   ( )  

             

Take in consideration that {         }is an orthonormal basis for    of eigenvectors of    
. Observe 

that the points                 are different. 

Similarly, {   
      

}. is an orthonormal basis for    of eigenvectors of    
. Kindly: 

        
    

       
     

    
            

and see that these operators are orthogonal projections onto the eigenspaces they span, respectively, as 

   
.  It is shown in (D. N. Clark, 1972).  that for each }    , 

               

Thus,    also includes these projections    
    

. Also, for any pair of analytic polynomials   and  , we 

have the following thanks to the spectral theorem for unitary operators: 

 (   
)  ∑ (  )   

    

 

   

     (   
)  ∑ (  )   

    

 

   

  

and so  (   
)  (   

)    . 

Then, to show that 

   ⋁{(   
)
 
 (   

)
 
           }  

it is sufficient to show that 

   ⋁{      
         }  

This is inferred immediately from    is dimension of     and Lemma (1.10). 

Remark (1.11): 

(1) According to Theorem (1.7), for some polynomials   and  , any    has the form  (   
)   (   

). 

Here, we note that if we choose the symbol   carefully, we can infer p and q from it. To see how to 

accomplish this, take note of how we have demonstrated that in the theorem (1.6) proof. 

⋁{   
    

    
    

        }      

Actually,   is basis will be any      of them. However, given that 

              
  

It is possible to write each operator in    as    where  
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  ∑  (   
      

)

 

   

 ∑  (   
      

)

 

   

  

Select polynomials   and   with a maximum degree of  . 

 (  )  √|  (  )|       (  )  √|  (  )|                

Then we have 

    (   
)   (   

)  

As the spectral theorem indicates 

 (   
)  ∑ (  )   

    

 

   

     (   
)  ∑ (  )   

    

 

   

  

Here is the outcome as of right now. 

(3)  Sarason (P. L. Duren 1970).  began a discussion of how the Clark unitary operators provide    for a 

generic inner function  . Using the Clark theory and some recent results of Aleksandrov and Poltoratski, 

he obtained the following integral formula for a limited Borel function   and an inner function  : 

        ∫ (  )
 

 

|  |

  
                                                                                                     (  ) 

If the weak meaning of the aforementioned integral is understood, that is, 

〈     〉  ∫〈 (  )   〉
 

 

|  |

  
            

There is also a variant of this formula where      (not necessarily bounded), although it requires 

highly specific interpretation. Additionally, Sarason establishes the closure of    within the topology of 

weak operators. Is that the case? 

    ⋁{ (  )                                     }                           (  ) 

⋁   represents the closed linear span in the weak operator topology mentioned above. When the Blaschke 

product   is finite, then this is unquestionably true (Theorem (1.6)). It is sufficient to demonstrate that 

{       } is thick in    in order to show (24) using (23). As previously stated, it is uncertain if the 

set above genuinely equals   . 

Results: 

1- The theorem for     shows that any complex symmetric 2×2 matrix represents a truncated 

Toeplitz operator with respect to the basis {       }. 

2- Really, the proof presented in (P. L. Duren 1970).  can be used to develop the spectral theorem for 

unitary operators and Theorem (1.6). 
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3- The method in which     is provided for a generic inner function   by the Clark unitary operators 

was introduced by Sarason (P. L. Duren 1970). He obtained the following integral formula for a limited 

Borel function   and an inner function   using the Clark theory and some new results of Aleksandrov 

and Poltoratski. 

Conclusion: 

We study Toeplitz operator compressions to coinvariant subspaces of   ⊖    . Many characterizations 

of these operators are found; those of rank one is described in particular. A portion of the material is 

explanatory. A necessary and sufficient condition has defined to explain the closed and bounded of 

Blaschke product. 
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